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1. Introduction

This document describes how to create and verify EdADSA-compatible signatures
using public key and private key formats initially defined for the X25519 and
X448 elliptic curve Diffie-Hellman functions ([1]-[4]). We refer to this as the
“XEdDSA” signature scheme (or “XEd25519” or “XEd448” for specific curves).

XEdDSA enables use of a single key pair format for both elliptic curve Diffie-
Hellman and signatures. In some situations it enables using the same key pair
for both algorithms.

This document also describes “VXEdDSA” which extends XEdDSA to make
it a verifiable random function, or VRF (as defined in [5] and [6]). Successful
verification of a VXEdDSA signature returns a VRF output which is guaranteed
to be unique for the message and public key. The VRF output for a given
message and public key is indistinguishable from random to anyone who has not
seen a VXEdDSA signature for that message and key.

2. Preliminaries

2.1. Notation

Multiplication of integers a and b modulo prime p is ab (mod p), or a * b (mod
p). Division is a/b (mod p) and is calculated as ab™? (mod p). We define inv(a)
(mod p) to return a! (mod p) when a is not 0, and return 0 when a is 0. This
may be calculated as inv(a) = aP* (mod p), per Fermat [7]. The ceil() and
floor() functions round up or down to the nearest integer.

Addition and subtraction of elliptic curve points A and Bis A + B and A - B.
Scalar multiplication of an integer a with an elliptic curve point B yields a new
point C' = aB.

Integer variables are in lower case (z, y). Points and other variables are in upper
case (P, Q). Integer constants are in lowercase except for the Montgomery curve
constant A, which follows convention.

Byte sequences are in bold (z, P). A bold integer or elliptic curve point represents
a fixed-length byte sequence encoding the value. See Section 2.4 for encoding
and decoding details. The concatenation of byte sequences ¢ and P is z || P.

Checking integers or points for equality is done with ¢ == b. Checking byte
sequences X and Y for equality is done with bytes equal(X, Y).



2.2. Elliptic curve parameters

An elliptic curve used with XEADSA or VXEdDSDA has the following parame-
ters:

Name Definition

Base point

Identity point

Field prime

Order of base point (prime; q < p; gB =1)
Cofactor

Twisted Edwards curve constant
Montgomery curve constant (see Section 2.6)
Nonsquare integer modulo p (see Section 2.6)
ceil(log2(p))

ceil(loga(q))

8 * (ceil((|p] + 1)/8) ) (= bitlength for encoded point or integer)
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An integer modulo p is a “field element”. An integer modulo ¢ is a “scalar”.

An elliptic curve is a set of pairs of field elements. Each pair is a “point”, the
field elements contained in a point are “coordinates”, and the coordinates of each
point must satisfy some equation which defines the curve. The on_ curve(P)
function returns true if a purported point P satisfies the curve equation.

The elliptic curve also defines an addition operation between points, and an
operation for negating points. Together with the identity point, these operations
define a group structure on the curve’s points. Adding a point P to itself k times
(P+ P+ P+ ...) is scalar multiplication by the scalar k, represented as kP.

XEdDSA and VXEdDSA are defined for twisted Edwards curves consisting of
points denoted (z, y). A twisted Edwards curve is birationally equivalent to
some Montgomery curve consisting of points denoted (u, v) [8]. We will mainly
deal with the twisted Edwards curve, so when we discuss the base point B and
identity point I, we are referring to points on the twisted Edwards curve.

The u_to_y function applies a curve-specific birational map to convert the
u-coordinate of a point on the Montgomery curve to the y-coordinate of the
equivalent point on the twisted Edwards curve.

2.3. Elliptic curve conversions

Elliptic curve Diffie-Hellman is often calculated using the Montgomery ladder.
This gives a simple and efficient calculation that is naturally resistant to timing
side channels. The Montgomery ladder also allows each party’s public key to



be a Montgomery u-coordinate. Using a single coordinate instead of the whole
point makes public keys smaller without the expense of point decompression.

However, EADSA signatures are defined on twisted Edwards curves, where a
public key is a compressed point consisting of a twisted Edwards y-coordinate
and a sign bit s which is either 0 or 1. A twisted Edwards y-coordinate and
sign bit provide an alternate representation of a twisted Edwards point, and
determine the z-coordinate as specified in [1] or [2].

Converting from a Montgomery u-coordinate to a twisted Edwards point P can
be done with the convert mont function, below. This function first masks off
excess high bits from u, which is standard practice for Curve25519 Montgomery
public keys, and is specified in [4]. The function then applies the curve-specific
birational map to compute a twisted Ewards y-coordinate, and finally chooses
the sign bit as zero.

convert_ mont(u):
Umasked = U (mOd 2\1:)\)
P'y = uftOfY(umasked)
Ps=0
return P

Because convert_mont doesn’t have the Montgomery v, it can’t distinguish
between the two possibilities for the twisted Edwards sign bit. Forcing the sign
bit to zero is an idea from Jivsov [9)].

To make private keys compatible with this conversion, we define a twisted
Edwards private key as a scalar a where the twisted Edwards public key A =
aB has a sign bit of zero (recall that B is the twisted Edwards base point). We
allow a Montgomery private key to be any scalar.

Converting a Montgomery private key &k to a twisted Edwards public key and
private key (A, a) can be done with the calculate key pair function ( “A” here
is the public key, not the Montgomery curve constant). This function multiplies
the Montgomery private key k by the twisted Edwards base point B, then adjusts
the private key if necessary to produce a sign bit of zero, following [9].

calculate_key pair(k):

E =kB
Ay=Ey
As=0
if E.s ==

a = -k (mod q)
else:

a =k (mod q)

return A, a



2.4. Byte sequences

An integer in bold represents a byte sequence of b bits that encodes the integer
in little-endian form. An elliptic curve point in bold (e.g. P) encodes P.y as an
integer in little-endian form of b-1 bits in length, followed by a bit for P.s.

2.5. Hash functions

XEdDSA and VXEdDSA require a cryptographic hash function. The default
hash function is SHA-512 [10].

We define hash as a function that applies the cryptographic hash to an input
byte sequence, and returns an integer which is the output from the cryptographic
hash parsed in little-endian form. Given hash and the curve constants p and b,
W/e/deﬁne a family of hash functions indexed by nonnegative integers 7 such that
2P -1 -4 >p.

hash; (X):
return hash(2® - 1 -1 || X)

So hashy hashes b/8 bytes of 0xFF prior to the input byte sequence X, hash;
changes the first byte to 0xFE, hashs changes the first byte to 0xFD, and so on.

Different hash; will be used for different purposes, to provide cryptographic
domain separation. Note that hash; will never call hash with the first b bits
encoding a valid scalar or elliptic curve point, since the first |p| bits encode
an integer greater than p. Note also that hashy is reserved for use by other
specifications, and is not used in this document.

2.6. Hashing to a point with Elligator 2

VXEdDSA requires mapping an input message to an elliptic curve point, which
is done using the Elligator 2 map [11].

The description in [11] is terse and uses different notation, so we briefly review
Elligator 2. The Montgomery curve equation for points (u, v) is v* = u(u® +
Au + 1) (mod p), where A is some curve-specific constant. Elligator 2 maps an
integer r onto some u for which u(u? + Au + 1) has a square root v modulo p.
The following lemma is used.

Lemma (Bernstein, Hamburg, Krasnova, Lange). If u; and ug are integers
modulo p such that ug = -A - u; and ug/u; = nr? for any r and fixed nonsquare
n, then the Montgomery curve equation v* = u(u® + Au + 1) has a solution for
U = Uy Or ¥ = ug, or both.

Proof. Given u; and ug, define w; = u;(u;® + Au; + 1) and we = ug(ug® +

Aug + 1). We must prove that a solution exists for either v* = w; or v* = ws.



We will show that wg/w; is either zero or nonsquare, which implies either that
wy is zero, which is square, or that one of wy or w; is square.

wa/wi = ug(u2? + Aug + 1) / ug(wi? + Auy + 1)

wo /w1 = (ug/uy) (ue? + Aug + 1) / (i1?2 + Auy + 1)
Applying ups = -A - u; gives:

wa /w1 = uz/uy
Applying uz/u; = nr® gives:

wo/wy = nr?

If r is zero then ws must be zero, which is square. If r is nonzero then since 2
is square and n is nonsquare, we/w; is nonsquare, which implies one of wy or w;
is square, so the proof is concluded. O

From the lemma it follows that u; = -A/(1 + nr?) and ug = -Anr®/(1 + nr?).
Thus given r, we can easily calculate u; and ug and use the Legendre symbol [12]
to choose whichever value gives a square w. The elligator2 function implements
this map from an integer r to an integer w.

elligator2(r):
u; = -A * inv(1 + nr?) (mod p)
w1 = w(u1? + Ay + 1) (mod p)

if wi(P1/2 == _1 (mod p):
ups = -A - u; (mod p)
return us
return u;
(The inv function is used safely since calling inv(0) when r° = -1/n will simply

map r onto u=0, a valid Montgomery u-coordinate.)

To map a byte sequence onto an Edwards point, we hash the byte sequence and
parse the hash output to get a field element r and a sign bit s. Elligator 2 converts
r to a Montgomery u-coordinate. The birational map converts the Montgomery
u-coordinate to an Edwards point. Finally, we multiply the Edwards point by
the cofactor ¢ to ensure it lies within the order ¢ subgroup generated by the
base point B. The hash_to_point function implements these steps.

hash_to_ point(X):
h = hashy(X)
r = h (mod 2/Pl)
s = floor((h mod 2°) / 2b-1)
u = elligator2(r)
Py =u_to_y(u)
Ps=s
return cP



3. XEdDSA

The XEdDSA signing algorithm requires the following inputs:

Name Definition

k Montgomery private key (integer mod q)

M Message to sign (byte sequence)

zZ 64 bytes secure random data (byte sequence)

The output is a signature (R || s), a byte sequence of length 2b bits, where R
encodes a point and s encodes an integer modulo gq.

The XEdDSA verification algorithm requires the following inputs:

Name Definition

U Montgomery public key (byte sequence of b bits)
M Message to verify (byte sequence)

R s Signature to verify (byte sequence of 2b bits)

If XEdDSA verification is successful it returns true, otherwise it returns false.
Below is the pseudocode for the zeddsa_sign and zeddsa__ verify functions.

xeddsa_ sign(k, M, Z):
A, a = calculate_key_pair(k)
r = hashy(a || M || Z) (mod q)
R =1B
h = hash(R || A || M) (mod q)
s =r + ha (mod q)
return R || s

xeddsa_ verify(u, M, (R || s)):

if u >=por Ry >= 2Pl or s >= 2ldl:
return false

A = convert_mont(u)

if not on__curve(A):
return false

h =hash(R || A || M) (mod q)

Reneck = sB - hA

if bytes_equal(R, Reheck):
return true

return false



4. VXEdDSA

The VXEdDSA signing algorithm takes the same inputs as XEADSA. The output
is a pair of values. First, a signature (V' || h || s), which is a byte sequence of
length 3b bits, where V encodes a point and h and s encode integers modulo
g. Second, a VRF output byte sequence v of length equal to b bits, formed by
multiplying the V output by the cofactor c.

The VXEdDSA verification algorithm takes the same inputs as XEdDSA, except
with a VXEdDSA signature instead of an XEdDSA signature. If VXEdDSA
verification is successful, it returns a VRF output byte sequence v of length
equal to b bits; otherwise it returns false.

Below is the pseudocode for the vreddsa_sign and vreddsa_verify functions.

vxeddsa_sign(k, M, Z):
A, a = calculate_key_ pair(k)
B, = hash_to_point(A || M)

V = aB,

r = hashs(a || V || Z) (mod q)
R=1B

R, =B,

b = hashy (A || V || R || Ry || M) (mod q)
s =1 + ha (mod q)

v = hash;(cV) (mod 2P)

return (V || h || s), v

vxeddsa,_ verify(u, M, (V || h || 8)):
if u>=por V.y >= 2Pl or h >= 2lal or 5 >= 2lal:
return false
A = convert_ mont(u)
B, = hash_to_point(A || M)
if not on_ curve(A) or not on_ curve(V):
return false
ifcA==TorcV==IorB, ==1
return false
R =sB-hA
R, =sB, - hV
heheck = hashy(A || V|| R || Ry || M) (mod q)
if bytes_equal(h, hepeck):
v = hash;(cV) (mod 2P)
return v
return false



5. Curve25519

The Curve25519 elliptic curve specified in [4] can be used with XEdDSA and
VXEdDSA, giving XEd25519 and VXEd25519. This curve defines the following

parameters.

Name Definition

convert__mont(9)

(x=0, y=1)

2255 - 19

2252 4 27742317777372353535851937790883648493
8

-121665 / 121666 (mod p)
486662

2

255

253

256
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The twisted Edwards curve equation is -2° + y* = 1 + dr*y®. The u_to_y
function implements the birational map from [4] by calculating y = (u - 1) *
inv( w + 1) (mod p).

XEd25519 signatures are valid Ed25519 signatures [1] and vice versa, provided
the public keys are converted with the birational map.

Ed25519 allows implementations some flexibility in accepting or rejecting certain
invalid signatures (e.g. with s unreduced, or checking the verification equation
with or without cofactor multiplication). XEdDSA precisely specifies verification,
so may differ from some Ed25519 implementations in accepting or rejecting such
signatures (just as some Ed25519 implementations may differ from each other).

The particular verification steps chosen by XEdDSA include rejecting s if it has
excess bits but not requiring it to be fully reduced, and checking verification
without cofactor multiplication. These choices align with existing Ed25519 code,
and lead to simpler implementations.



6. Curve448

The Curved48 elliptic curve specified in [4] can be used with XEdDSA and
VXEdDSA, giving XEd448 and VXEd448. This curve defines the following

parameters.

Name Definition

B convert__mont(5)

(x=0, y=1)
2448 _ 2224 -1

9446 _

13818066809895115352007386748515426880336692474882178609894547503885
4

39082 / 39081 (mod p)

156326

-1

448

446

456

ST S
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Sz %

The twisted Edwards curve equation is 2° + y° = 1 + d2’y®. The u_to_y
function implements the birational map from [4] by calculating y = (1 + u) *
inv(1 - u) (mod p).

XEd448 differs from EdDSA [2] in choice of hash function. XEd448 uses SHA-512,
whereas [2] recommends a 912-bit hash (912 = 2b). If the hash function is secure,
outputs larger than 512 bits don’t add security with Curved48, so XEd448 makes
a simpler choice.

XEd448 may differ from other proposed instantiations of EADSA [13] which use
the “4-isogenous” curve from [4] rather than the “birationally equivalent” curve.
Mapping from the Montgomery form Curve448 to the isogenous curve is more
complicated.
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7. Performance considerations

This section contains an incomplete list of performance considerations.

Faster signing: Calling calculate_key pair for every XEdADSA signature
roughly doubles signing time compared to EADSA, since calculate key pair
performs an additional scalar multiplication £ = kB. VXEdDSA signing is more
expensive, so the impact is proportionally less. To avoid this cost signers may
cache the (non-secret) point E.

Pre-hashing: Except for XEADSA verification, the signing and verification
algorithms hash the input message twice. For large messages this could be
expensive, and would require either large buffers or more complicated APIs.

To prevent this, APIs may wish to specify a maximum message size that all
implementations must be capable of buffering. Protocol designers can specify
“pre-hashing” of message fields to fit within this. Designers are encouraged to use
pre-hashing selectively, so as to limit the potential impact from collision attacks
(e.g. pre-hashing the attachments to a message but not the message header or
body).

8. Security considerations

This section contains an incomplete list of security considerations.

Random secret inputs: XEdDSA and VXEdDSA signatures are randomized,
they are not deterministic in the sense of [1] or [14]. The caller must pass in a
new secret and random 64 byte value each time the signing function is called.

Deterministic signatures are designed to prevent reuse of the same nonce r with
different messages, as this reveals the private key a. Consider two XEdDSA
signatures (R || s1) and (R || s2) such that:

s1 =1 + hja (mod q)
Sg =1 + hoa (mod q)

The private key a can be calculated as a = (s; - s2)/(h; - hg) (mod gq).

A deterministic signing scheme hashes M with a long-term secret to calculate r,
instead of taking r from a random number generator. Because M is also hashed
to calculate h the probability that different h get the same r is small. However,
if the same message is signed repeatedly, a glitch that affects the calculation of
h could cause this to happen (an observation due to Benedikt Schmidt). Also,
repeated use of the same r might make it easier to recover information about r
through side-channel analysis.

So XEdDSA and VXEdDSA preserve the idea of calculating r by hashing a long-
term secret key and the message, but add a random value into the calculation

11



for greater resilience.

Constant time. The signing algorithms must not perform different memory
accesses or take different amounts of time depending on secret information.
This is typically achieved by “constant time” implementations that execute a
fixed sequence of instructions and memory accesses, regardless of secret keys or
message contents.

Particular care should be taken with the calculate key pair function due to its
use of conditional branching. The hash__to_ point function also uses conditional
branching (within elligator2) and should be made constant time, even though it
only handles the message, not secret keys.

Key reuse: It is safe to use the same key pair to produce XEdDSA and
VXEdDSA signatures.

In theory, under some circumstances it is safe to use a key pair to produce
signatures and also use the same key pair within certain Diffie-Hellman based
protocols [15]. In practice this is a complicated topic requiring careful analysis,
and is outside the scope of the current document.
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